کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
977136 1480156 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of different waiting time processes with memory to anomalous diffusion dynamics in an external force fields
ترجمه فارسی عنوان
تأثیر فرآیندهای زمان انتظار مختلف با حافظه به پویایی انتشار غیرمستقیم در یک میدان نیروی خارجی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی


• We introduce the continuous time random walks with memory in the waiting time.
• We obtain the mean squared displacement, and the diffusion exponent is dependent on the model parameters.
• These processes obey a generalized Einstein–Stokes–Smoluchowski relation and the second Einstein relation.
• The asymptotic behavior of waiting times and subordinations are of stretched Gaussian distributions.
• We obtain the Fokker–Planck equation, and show that the process exhibits weak ergodicity breaking.

In this paper, we study the anomalous diffusion of a particle in an external force field whose motion is governed by nonrenewal continuous time random walks with memory. In our models, the waiting time involves Riemann–Liouville fractional derivative or Riemann–Liouville fractional integral. We obtain the systematic observation on the mean squared displacement, the Fokker–Planck-type dynamic equations and their stationary solutions. These processes obey a generalized Einstein–Stokes–Smoluchowski relation, and observe the second Einstein relation. The asymptotic behavior of waiting times and subordinations are of stretched Gaussian distributions. We also discuss the time averaged in the case of an external force field, and show that the process exhibits aging and ergodicity breaking.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 417, 1 January 2015, Pages 202–214
نویسندگان
, , , , ,