کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
977526 | 1480199 | 2006 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Application of Zhangs square root law and herding to financial markets
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We apply an asymmetric version of Kirman's herding model to volatile financial markets. In the relation between returns and agent concentration we use the square root law proposed by Zhang. This can be derived by extending the idea of a critical mean field theory suggested by Plerou et al. We show that this model is equivalent to the so called 32 model of stochastic volatility. The description of the unconditional distribution for the absolute returns is in good agreement with the DAX independent whether one uses the square root or a conventional linear relation. Only the statistic of extreme events prefers the former. The description of the autocorrelations are in much better agreement for the square root law. The volatility clusters are described by a scaling law for the distribution of returns conditional to the value at the previous day in good agreement with the data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 364, 15 May 2006, Pages 369-384
Journal: Physica A: Statistical Mechanics and its Applications - Volume 364, 15 May 2006, Pages 369-384
نویسندگان
Friedrich Wagner,