کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
977760 933205 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Geometrical minimum units of fracture patterns in two-dimensional space: Lattice and discrete Walsh functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Geometrical minimum units of fracture patterns in two-dimensional space: Lattice and discrete Walsh functions
چکیده انگلیسی

We present the geometrical minimum units of fracture patterns in two-dimensional space. For this analysis, a new method is developed from the algebraic approach: the concept of lattice (a type of partially ordered set) is applied to the discrete Walsh functions that have been used to measure symmetropy (an object related to symmetry and entropy) of fracture patterns. We concluded that the minimum units of fracture patterns can be expressed as three kinds of lattice. Our model is applied to the temporal change of the spatial pattern of acoustic-emission events in a rock-fracture experiment. As a result, the symmetropy of lattice decreases with the evolution of fracture process. We find that the pre-nucleation process of fracture corresponds to the subcritical states, and the propagation process to the critical states. Moreover, using a particular mathematical structure called sheaf on a lattice, we suggest the algebraic interpretation of fracture process, and provide justification to regard fracturing as an irreversible process.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 387, Issue 25, 1 November 2008, Pages 6252–6262
نویسندگان
, , ,