کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
977850 | 933215 | 2008 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Time vs. ensemble averages for nonstationary time series
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We analyze whether sliding window time averages applied to stationary increment processes converge to a limit in probability. The question centers on averages, correlations, and densities constructed via time averages of the increment x(t,T)=x(t+T)âx(t), e.g. x(t,T)=ln(p(t+T)/p(t)) in finance and economics, where p(t) is a price, and the assumption is that the increment is distributed independently of t. We apply Tchebychev's Theorem to the construction of statistical ensembles, and then show that the convergence in probability condition is not satisfied when applied to time averages of functions of stationary increments. We further show that Tchebychev's Theorem provides the basis for constructing approximate ensemble averages and densities from a single, historic time series where, as in FX markets, the series shows a definite 'statistical periodicity'. The convergence condition is not satisfied strongly enough for densities and certain averages, but is well-satisfied by specific averages of direct interest. Rates of convergence cannot be established independently of specific models, however. Our analysis shows how to decide which empirical averages to avoid, and which ones to construct.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 387, Issue 22, 15 September 2008, Pages 5518-5522
Journal: Physica A: Statistical Mechanics and its Applications - Volume 387, Issue 22, 15 September 2008, Pages 5518-5522
نویسندگان
Joseph L. McCauley,