کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
978305 933271 2010 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bi-velocity transport processes. Single-component liquid and gaseous continua
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Bi-velocity transport processes. Single-component liquid and gaseous continua
چکیده انگلیسی
The present contribution supplements the previous findings regarding the need for two independent velocities rather than one when quantifying mass, momentum and energy transport phenomena in fluid continua. Explicitly, for the case of single-component fluids the present paper furnishes detailed expressions for the phenomenological coefficients appearing in the constitutive equations governing these bi-velocity transport processes. Whereas prior analyses furnished coefficient values only for the case of dilute monatomic gases using data from Burnett's solution of the Boltzmann equation, the present study furnishes values applicable to all fluids, liquids as well as dense gases. Moreover, whereas prior coefficient calculations derived these values (for dilute monatomic gases) from Burnett's solution of Boltzmann's gas-kinetic equation, the latter a molecular theory, the present analysis derives the liquid- and gas-phase values from purely macroscopic data requiring knowledge only of the fluid's coefficients of thermal expansion, isothermal compressibility, and thermometric diffusivity. In the dilute monatomic gas case common to both levels of analysis, the respective molecularly and macroscopically derived phenomenological coefficients are found to be in excellent agreement, confirming the credibility of both bi-velocity theory and the theory establishing the values of the phenomenological coefficients appearing in the constitutive relations derived therefrom. Whereas the preceding macroscopic calculations invoked Onsager's reciprocal theorem relating coupled phenomenological coefficients, an alternative scheme is presented at the conclusion of the paper, one that reverses the usual order of things, at least in the present single-component fluid case. This alternate scheme enables Onsager's nonequilibrium reciprocal relation, originally derived by him using molecular arguments, to be derived using purely macroscopic arguments originating from knowledge of Maxwell's equilibrium reciprocal relations, the latter fundamental to equilibrium thermodynamics.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 389, Issue 7, 1 April 2010, Pages 1297-1316
نویسندگان
,