کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
978805 | 1480201 | 2006 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Comment on “First-order phase transitions: Equivalence between bimodalities and the Yang–Lee theorem”
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
I discuss the validity of a result put forward recently by Chomaz and Gulminelli [Physica A 330 (2003) 451] concerning the equivalence of two definitions of first-order phase transitions. I show that distributions of zeros of the partition function fulfilling the conditions of the Yang–Lee Theorem are not necessarily associated with nonconcave microcanonical entropy functions or, equivalently, with canonical distributions of the mean energy having a bimodal shape, as claimed by Chomaz and Gulminelli. In fact, such distributions of zeros can also be associated with concave entropy functions and unimodal canonical distributions having affine parts. A simple example is worked out in detail to illustrate this subtlety.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 359, 1 January 2006, Pages 375–379
Journal: Physica A: Statistical Mechanics and its Applications - Volume 359, 1 January 2006, Pages 375–379
نویسندگان
Hugo Touchette,