کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9824477 1521239 2005 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Burnup study for Pakistan Research Reactor-1 utilizing high density low enriched uranium fuel
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Burnup study for Pakistan Research Reactor-1 utilizing high density low enriched uranium fuel
چکیده انگلیسی
Burnup study for Pakistan Research Reactor-1 (PARR-1), which is a typical swimming pool type MTR utilizing high density low enriched uranium fuel, was performed by using Fuel Cycle Analysis Program (FCAP). Existing equilibrium core of PARR-1, which is relatively economical but provides less neutron fluxes per unit power than the first equilibrium core, was formed by adding five more fuel elements in the first equilibrium core. This study shows that if the fuel loading is increased in the first equilibrium core of PARR-1 by replacing the fuel of density 3.28 gU/cm3 by the fuel of density 4.00 gU/cm3 then the new equilibrium core can provide 10% higher neutron fluxes at the irradiation sites and will also require 1.5 kg less fuel than that required for existing equilibrium core for one-year full power operation at 10 MW. The new core provides neutron fluxes at 13% lower cost and if the size of this core is further reduced by three fuel elements then this core can provide 20% higher thermal neutron flux at the central flux trap at 9% lower cost. A possible use of U-Mo (5 w/o Mo) fuel of density 8.5 gU/cm3 in PARR-1 with an increase in existing water channel width from 2.1 to 2.45 mm (Ann. Nucl. Energy 32(1), 29-62) would provide up to 41% more thermal neutron flux at the central flux trap at 13% lower cost than the existing equilibrium core. The power peaking factors in these cores are similar to the power peaking factors of the existing equilibrium core and these cores are likely to operate within the safety constraints as defined for the existing equilibrium core of PARR-1.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Nuclear Energy - Volume 32, Issue 10, July 2005, Pages 1100-1121
نویسندگان
, , ,