کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9824485 1521240 2005 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Time-eigenvalue calculations in multi-region Cartesian geometry using Green's functions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Time-eigenvalue calculations in multi-region Cartesian geometry using Green's functions
چکیده انگلیسی
We have continued the progression of providing benchmark-quality eigenvalue calculations in multi-region Cartesian geometry by reformulating the effective multiplication equations to calculate time eigenvalues. As with effective multiplication eigenvalues, there are few benchmark-quality solutions for time-eigenvalue calculations in multi-region multiplying systems, especially for systems that have divergent temporal neutron populations. The purpose of this paper is to describe the reformulations required and to add benchmark-quality calculations for several test problems. Green's functions are used to model a multi-region, one-group, isotropically scattering, multiplying system in Cartesian geometry to obtain boundary flux values for a time-eigenvalue search and subsequent eigenfunction calculation. As usual with multi-region Cartesian systems, the solution is facilitated using (1) Placzek's lemma, which allows us to consider a multi-region system one region at a time as an infinite medium, and (2) the calculation of the Green's function solution for a nonphysical infinite multiplying medium.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Nuclear Energy - Volume 32, Issue 9, June 2005, Pages 964-985
نویسندگان
, ,