کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
997663 1481461 2010 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling
موضوعات مرتبط
علوم انسانی و اجتماعی مدیریت، کسب و کار و حسابداری کسب و کار و مدیریت بین المللی
پیش نمایش صفحه اول مقاله
Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling
چکیده انگلیسی

An efficient and accurate approach is proposed for forecasting the Value at Risk (VaR) and Expected Shortfall (ES) measures in a Bayesian framework. This consists of a new adaptive importance sampling method for the Quick Evaluation of Risk using Mixture of tt approximations (QERMit). As a first step, the optimal importance density is approximated, after which multi-step ‘high loss’ scenarios are efficiently generated. Numerical standard errors are compared in simple illustrations and in an empirical GARCH model with Student-tt errors for daily S&P 500 returns. The results indicate that the proposed QERMit approach outperforms alternative approaches, in the sense that it produces more accurate VaR and ES estimates given the same amount of computing time, or, equivalently, that it requires less computing time for the same numerical accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Forecasting - Volume 26, Issue 2, April–June 2010, Pages 231–247
نویسندگان
, ,