کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
997672 1481461 2010 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-tt errors, and its application for forecasting
موضوعات مرتبط
علوم انسانی و اجتماعی مدیریت، کسب و کار و حسابداری کسب و کار و مدیریت بین المللی
پیش نمایش صفحه اول مقاله
Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-tt errors, and its application for forecasting
چکیده انگلیسی

A description of computationally efficient methods for the Bayesian analysis of Student-tt seemingly unrelated regression (SUR) models with unknown degrees of freedom is given. The method combines a direct Monte Carlo (DMC) approach with an importance sampling procedure to calculate Bayesian estimation and prediction results using a diffuse prior. This approach is employed to compute Bayesian posterior densities for the parameters, as well as predictive densities for future values of variables and the associated moments, intervals and other quantities that are useful to both forecasters and others. The results obtained using our approach are compared to those yielded by the use of DMC for a standard normal SUR model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Forecasting - Volume 26, Issue 2, April–June 2010, Pages 413–434
نویسندگان
, ,