کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
998220 1481452 2012 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fast sparse regression and classification
موضوعات مرتبط
علوم انسانی و اجتماعی مدیریت، کسب و کار و حسابداری کسب و کار و مدیریت بین المللی
پیش نمایش صفحه اول مقاله
Fast sparse regression and classification
چکیده انگلیسی

Many present day applications of statistical learning involve large numbers of predictor variables. Often, that number is much larger than the number of cases or observations available for training the learning algorithm. In such situations, traditional methods fail. Recently, new techniques have been developed, based on regularization, which can often produce accurate models in these settings. This paper describes the basic principles underlying the method of regularization, then focuses on those methods which exploit the sparsity of the predicting model. The potential merits of these methods are then explored by example.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Forecasting - Volume 28, Issue 3, July–September 2012, Pages 722–738
نویسندگان
,