کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10110909 | 1619998 | 2005 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Quantifying and reducing uncertainty in life cycle assessment using the Bayesian Monte Carlo method
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم محیط زیست
شیمی زیست محیطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The traditional life cycle assessment (LCA) does not perform quantitative uncertainty analysis. However, without characterizing the associated uncertainty, the reliability of assessment results cannot be understood or ascertained. In this study, the Bayesian method, in combination with the Monte Carlo technique, is used to quantify and update the uncertainty in LCA results. A case study of applying the method to comparison of alternative waste treatment options in terms of global warming potential due to greenhouse gas emissions is presented. In the case study, the prior distributions of the parameters used for estimating emission inventory and environmental impact in LCA were based on the expert judgment from the intergovernmental panel on climate change (IPCC) guideline and were subsequently updated using the likelihood distributions resulting from both national statistic and site-specific data. The posterior uncertainty distribution of the LCA results was generated using Monte Carlo simulations with posterior parameter probability distributions. The results indicated that the incorporation of quantitative uncertainty analysis into LCA revealed more information than the deterministic LCA method, and the resulting decision may thus be different. In addition, in combination with the Monte Carlo simulation, calculations of correlation coefficients facilitated the identification of important parameters that had major influence to LCA results. Finally, by using national statistic data and site-specific information to update the prior uncertainty distribution, the resultant uncertainty associated with the LCA results could be reduced. A better informed decision can therefore be made based on the clearer and more complete comparison of options.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of The Total Environment - Volume 340, Issues 1â3, 20 March 2005, Pages 23-33
Journal: Science of The Total Environment - Volume 340, Issues 1â3, 20 March 2005, Pages 23-33
نویسندگان
Shih-Chi Lo, Hwong-wen Ma, Shang-Lien Lo,