کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10115581 | 1621784 | 2018 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Quantifying spatial-temporal changes of tea plantations in complex landscapes through integrative analyses of optical and microwave imagery
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
کامپیوتر در علوم زمین
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
High demand for tea has driven the expansion of tea plantations in the tropical and subtropical regions over the past few decades. Tea plant cultivation promotes economic development and creates job opportunities, but tea plantation expansion has significant impacts on biodiversity, carbon and water cycles, and ecosystem services. Mapping the spatial distribution and extent of tea plantations in a timely fashion is crucial for land use management and policy making. In this study, we mapped tea plantation expansion in Menghai County, Yunnan Province, China. We analyzed the structure and features of major land cover types in this tropical and subtropical region using (1) the HH and HV gamma-naught imagery from the Advanced Land Observation Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) and (2) time series Landsat TM/ETM+/OLI imagery. Tea plantation maps for 2010 and 2015 were generated using the pixel-based support vector machine (SVM) approach at 30âm resolution, which had high user/producer accuracies of 83.58%/91.67% and 87.50%/90.83%, respectively. The resultant maps show that tea plantation area increased by 33.56% (â¼9335âha), from â¼27,817âha in 2010 to â¼37,152âha in 2015. The additional tea plantation area was mainly converted from forest (32.50%) and cropland (67.50%). The results showed that the combination of PALSAR and optical data performed better in tea plantation mapping than using optical data only. This study provides a promising new approach to identify and map tea plantations in complex tropical landscapes at high spatial resolution.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Applied Earth Observation and Geoinformation - Volume 73, December 2018, Pages 697-711
Journal: International Journal of Applied Earth Observation and Geoinformation - Volume 73, December 2018, Pages 697-711
نویسندگان
Weiheng Xu, Yuanwei Qin, Xiangming Xiao, Guangzhi Di, Russell B. Doughty, Yuting Zhou, Zhenhua Zou, Lei Kong, Quanfu Niu, Weili Kou,