کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10150971 | 1666103 | 2019 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fast neighbor search by using revised k-d tree
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We present two new neighbor query algorithms, including range query (RNN) and nearest neighbor (NN) query, based on revised k-d tree by using two techniques. The first technique is proposed for decreasing unnecessary distance computations by checking whether the cell of a node is inside or outside the specified neighborhood of query point, and the other is used to reduce redundant visiting nodes by saving the indices of descendant points. We also implement the proposed algorithms in Matlab and C. The Matlab version is to improve original RNN and NN which are based on k-d tree, C version is to improve k-Nearest neighbor query (kNN) which is based on buffer k-d tree. Theoretical and experimental analysis have shown that the proposed algorithms significantly improve the original RNN, NN and kNN in low dimension, respectively. The tradeoff is that the additional space cost of the revised k-d tree is approximately O(αnlogâ(n)).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 472, January 2019, Pages 145-162
Journal: Information Sciences - Volume 472, January 2019, Pages 145-162
نویسندگان
Yewang Chen, Lida Zhou, Yi Tang, Jai Puneet Singh, Nizar Bouguila, Cheng Wang, Huazhen Wang, Jixiang Du,