کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10156360 | 1666387 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Deep Learning for fault detection in wind turbines
ترجمه فارسی عنوان
آموزش عمیق برای تشخیص خطا در توربین های بادی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
SPCLSTMStacked denoising autoencoderStacked autoencoderEWMASAERNNNBMSCADAROCMLPGRUANNAPIAUC - AUCPCA - PCAPrincipal component analysis - تحلیل مولفههای اصلی یا PCAFault detection - تشخیص خطاWind turbine - توربین بادیApplication programming interface - رابط برنامه نویسی برنامهRBM - سربازیCNN - سی ان انArtificial Neural Network - شبکه عصبی مصنوعیRecurrent neural network - شبکه عصبی مکررConvolutional neural network - شبکه عصبی همجوشیMahalanobis distance - فاصله MahalanobisRestricted Boltzmann Machine - ماشین Boltzmann محدود شده استarea under the curve - منطقه تحت منحنیSupervisory control and data acquisition - نظارت کنترل و اکتساب داده هاGated Recurrent Unit - واحد موقت گیتGraphical processing unit - واحد پردازش گرافیکیGPU - واحد پردازش گرافیکیreceiver operating characteristics - ویژگی های عملکرد گیرندهcondition monitoring - پایش وضعیتMulti-Layer Perceptron - چند لایه ی PerceptronStatistical process control - کنترل فرآیند آماریDeep learning - یادگیری عمیق
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Condition monitoring in wind turbines aims at detecting incipient faults at an early stage to improve maintenance. Artificial neural networks are a tool from machine learning that is frequently used for this purpose. Deep Learning is a machine learning paradigm based on deep neural networks that has shown great success at various applications over recent years. In this paper, we review unsupervised and supervised applications of artificial neural networks and in particular of Deep Learning to condition monitoring in wind turbines. We find that - despite a promising performance of supervised methods - unsupervised approaches are prevalent in the literature. To explain this phenomenon, we discuss a range of issues related to obtaining labelled data sets for supervised training, namely quality and access as well as labelling and class imbalance of operational data. Furthermore, we find that the application of Deep Learning to SCADA data is impeded by their relatively low dimensionality, and we suggest ways of working with higher-dimensional SCADA data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable and Sustainable Energy Reviews - Volume 98, December 2018, Pages 189-198
Journal: Renewable and Sustainable Energy Reviews - Volume 98, December 2018, Pages 189-198
نویسندگان
Georg Helbing, Matthias Ritter,