کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10156745 1666424 2018 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Calcium signaling defects underlying salivary gland dysfunction
ترجمه فارسی عنوان
نقص سیگنالینگ کلسیم تحت اختلالات غدد بزاقی است
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
چکیده انگلیسی
Salivary glands secrete saliva, a mixture of proteins and fluids, which plays an extremely important role in the maintenance of oral health. Loss of salivary secretion causes a dry mouth condition, xerostomia, which has numerous deleterious consequences including opportunistic infections within the oral cavity, difficulties in eating and swallowing food, and problems with speech. Saliva secretion is regulated by stimulation of specific signaling mechanisms within the acinar cells of the gland. Neurotransmitter-stimulated increase in cytosolic [Ca2+] ([Ca2+]i) in acinar cells is the primary trigger for salivary fluid secretion from salivary glands, the loss of which is a critical factor underlying dry mouth conditions in patients. The increase in [Ca2+]i regulates multiple ion channel and transport activities that together generate the osmotic gradient which drives fluid secretion across the apical membrane. Ca2+ entry mediated by the Store-Operated Ca2+ Entry (SOCE) mechanism provides the essential [Ca2+]i signals to trigger salivary gland fluid secretion. Under physiological conditions depletion of ER-Ca2+ stores is caused by activation of IP3R by IP3 and this provides the stimulus for SOCE. Core components of SOCE in salivary gland acinar cells are the plasma membrane Ca2+ channels, Orai1 and TRPC1, and STIM1, a Ca2+-sensor protein in the ER, which regulates both channels. In addition, STIM2 likely enhances the sensitivity of cells to ER-Ca2+ depletion thereby tuning the cellular response to agonist stimulation. Two major, clinically relevant, conditions which cause irreversible salivary gland dysfunction are radiation treatment for head-and-neck cancers and the autoimmune exocrinopathy, Sjögren's syndrome (pSS). However, the exact mechanism(s) that causes the loss of fluid secretion, in either condition, is not clearly understood. A number of recent studies have identified that defects in critical Ca2+ signaling mechanisms underlie salivary gland dysfunction caused by radiation treatment or Sjögren's syndrome (pSS). This chapter will discuss these very interesting and important studies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research - Volume 1865, Issue 11, Part B, November 2018, Pages 1771-1777
نویسندگان
,