کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10159315 47 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation
چکیده انگلیسی
Recent studies have pointed towards a decisive role of inflammation in triggering tissue repair and regeneration, while at the same time it is accepted that an exacerbated inflammatory response may lead to rejection of an implant. Within this context, understanding and having the capacity to regulate the inflammatory response elicited by 3-D scaffolds aimed for tissue regeneration is crucial. This work reports on the analysis of the cytokine profile of human monocytes/macrophages in contact with biodegradable 3-D scaffolds with different surface properties, architecture and controlled pore geometry, fabricated by 3-D printing technology. Fabrication processes were optimized to create four different 3-D platforms based on polylactic acid (PLA), PLA/calcium phosphate glass or chitosan. Cytokine secretion and cell morphology of human peripheral blood monocytes allowed to differentiate on the different matrices were analyzed. While all scaffolds supported monocyte/macrophage adhesion and stimulated cytokine production, striking differences between PLA-based and chitosan scaffolds were found, with chitosan eliciting increased secretion of tumor necrosis factor (TNF)-α, while PLA-based scaffolds induced higher production of interleukin (IL)-6, IL-12/23 and IL-10. Even though the material itself induced the biggest differences, the scaffold geometry also impacted on TNF-α and IL-12/23 production, with chitosan scaffolds having larger pores and wider angles leading to a higher secretion of these pro-inflammatory cytokines. These findings strengthen the appropriateness of these 3-D platforms to study modulation of macrophage responses by specific parameters (chemistry, topography, scaffold architecture).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Biomaterialia - Volume 10, Issue 2, February 2014, Pages 613-622
نویسندگان
, , , , , ,