کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10160181 66 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new approach to influence contact angle and surface free energy of resin-based dental restorative materials
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
A new approach to influence contact angle and surface free energy of resin-based dental restorative materials
چکیده انگلیسی
The purpose of the present study was to identify novel delivery systems and active agents which increase the water contact angle and reduce the surface free energy when added to resin-based dental restorative materials. Two delivery systems based on zeolite or novel polymeric hollow beads (Poly-Pore), loaded with two low surface tension active agents (hydroxy functional polydimethylsiloxane and polydimethylsiloxane) or a polymerizable active agent (silicone polyether acrylate) were used to modify commonly formulated experimental dental resin composites. The non-modified resin was used as a standard (ST). Flexural strength, flexural modulus, water sorption, solubility, polymerization shrinkage, surface roughness Ra, contact angle θ, total surface free energy γS, and the apolar γSLW, polar γSAB, Lewis acid γS+ and base γS- components, and the active agents surface tensions γL were determined (P < 0.05). The active agents did not differ in γL. The modified materials had significantly higher θ but significantly lower γS, γSAB and γS- than the ST. A Poly-Pore/polydimethyl siloxane delivery system yielded the highest θ (110.9 ± 3.5°) acceptable physical properties and the lowest values for γSLW and γS-. Among the modified materials the polymerizable materials containing active agents had the lowest γAB and the highest γS+ and γS-. Although not significant, both of the zeolite delivery systems yielded higher γSLW, γS+ and γS- but lower γSAB than the Poly-Pore delivery systems. Poly-Pore based delivery systems highly loaded with low surface tension active agents were found not to influence the physical properties but to significantly increase the water contact angle and thus reduce surface free energy of dental resin composites.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Biomaterialia - Volume 7, Issue 3, March 2011, Pages 1160-1165
نویسندگان
, , , , , ,