کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10235506 45045 2012 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Increasing the storage and oxidation stabilities of N-acyl-d-amino acid amidohydrolase by site-directed mutagenesis of critical methionine residues
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Increasing the storage and oxidation stabilities of N-acyl-d-amino acid amidohydrolase by site-directed mutagenesis of critical methionine residues
چکیده انگلیسی
The recombinant N-acyl-d-amino acid amidohydrolase (N-d-AAase) of Variovorax paradoxus Iso1 was unstable during protein purification and storage at 4 °C. Since the methionine oxidation might be the artificial factor leading to the inactivation of N-d-AAase, eight potential oxidation sensitive methionine residues of the enzyme were individually substituted with leucine utilizing site-directed mutagenesis. Among them, five mutants, M39L, M56L, M221L, M254L, and M352L remained at least 70% of wild-type specific activity. The enzyme kinetic parameters of M221L revealed a 44% decrease in Km, and finally reflected a 2.4-fold increase in kcat/Km. Moreover, its half-life at 4 °C increased up to 6-fold longer than that of the wild-type. Structural analysis of each methionine substitution was carried out based on the crystal structure of N-d-AAase from Alcaligenes faecalis DA1. Met221 spatial closeness to the zinc-assistant catalytic center is highly potential as the primary site for oxidative inactivation. We conclude that the replacement of methionine M221 with leucine in N-d-AAase successfully enhances the oxidative resistance, half-life, and enzyme activity. This finding provides a promising basis for the engineering the stability and activity of N-d-AAase.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Process Biochemistry - Volume 47, Issue 12, December 2012, Pages 1785-1790
نویسندگان
, , , ,