کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10264358 457804 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effects of thermodynamic conditions on the end gas combustion mode associated with engine knock
ترجمه فارسی عنوان
تأثیر شرایط ترمودینامیکی در حالت احتراق گاز پایان یافته مرتبط با ضربه گیر موتور
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی
Super-knock is the main obstacle to improve power density and engine efficiency of modern gasoline engines. To understand the mechanism of super-knock, this study presents an investigation on the end gas combustion process of stoichiometric isooctane/oxygen/nitrogen mixture using a rapid compression machine (RCM), under the thermodynamic conditions close to those of production engines. The combustion process was captured by simultaneous high speed direct photography and pressure acquisition in the RCM. Three end gas combustion modes: no-auto-ignition, sequential auto-ignition, and detonation under different initial conditions were identified and characterized. The super-knock in engine was confirmed to be the result of detonation by comparing the pressure oscillation, thermodynamic state, and pressure rise relative to isochoric combustion with those of detonation observed in the RCM. The experimental results also indicate that the possibility of detonation occurrence increases with increasing initial pressure under the same compression ratio. However, comparing to the pressure, temperature has less effect on detonation formation. It was found that the end gas combustion mode is closely related to the mixture energy density. Generally, as the mixture energy density increases, the end gas combustion mode gradually transits from no-auto-ignition to sequential auto-ignition, and then to detonation. The first auto-ignition spots commonly appear in the mixture near the cylinder wall. The detonation was initiated by near-wall auto-ignition.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Combustion and Flame - Volume 162, Issue 11, November 2015, Pages 4119-4128
نویسندگان
, , , ,