کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10294125 512523 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical investigation of a two-stage air-cooled absorption refrigeration system for solar cooling: Cycle analysis and absorption cooling performances
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله
Numerical investigation of a two-stage air-cooled absorption refrigeration system for solar cooling: Cycle analysis and absorption cooling performances
چکیده انگلیسی
Two-stage air-cooled ammonia-water absorption refrigeration system could make good use of low-grade solar thermal energy to produce cooling effect. The system simulation results show that thermal COP is 0.34 and electrical COP is 26 under a typical summer condition with 85 °C hot water supplied from solar collector. System performances under variable working conditions are also analyzed. Circular finned tube bundles are selected to build the air-cooled equipment. The condenser should be arranged in the front to get an optimum system performance. The mathematical model of the two-stage air-cooled absorber considering simultaneous heat and mass transfer processes is developed. Low pressure absorber should be arranged in front of middle pressure absorber to minimize the absorption length. Configuration of the air-cooled equipment is suggested for a 5 kW cooling capacity system. Temperature and concentration profiles along the finned tube length show that mass transfer resistance mainly exists in liquid phase while heat transfer resistance mainly exists in cooling air side. The impacts on system refrigeration capacities related to absorption behaviors under variable working conditions are also investigated. Both cycle analysis and absorption performances show that two-stage air-cooled ammonia-water absorption chiller is technically feasible in practical solar cooling applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 36, Issue 5, May 2011, Pages 1401-1412
نویسندگان
, , ,