کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10322141 | 660819 | 2014 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy
ترجمه فارسی عنوان
الگوریتم جستجوی کوکو و تحقیق مبتنی بر بهینه سازی مبتنی بر باد از تقسیم بندی تصاویر ماهواره ای برای آستانه چند سطحی با استفاده از آنتروپی کاپور
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تقسیم بندی تصویر، آستانه چند سطحی، آنتروپی کاپورا، الگوریتم جستجوی کوکنار، بهینه سازی باد، بهینه سازی ذرات ذرات، هوشافزاری
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
The objective of image segmentation is to extract meaningful objects. A meaningful segmentation selects the proper threshold values to optimize a criterion using entropy. The conventional multilevel thresholding methods are efficient for bi-level thresholding. However, they are computationally expensive when extended to multilevel thresholding since they exhaustively search the optimal thresholds to optimize the objective functions. To overcome this problem, two successful swarm-intelligence-based global optimization algorithms, cuckoo search (CS) algorithm and wind driven optimization (WDO) for multilevel thresholding using Kapur's entropy has been employed. For this purpose, best solution as fitness function is achieved through CS and WDO algorithm using Kapur's entropy for optimal multilevel thresholding. A new approach of CS and WDO algorithm is used for selection of optimal threshold value. This algorithm is used to obtain the best solution or best fitness value from the initial random threshold values, and to evaluate the quality of a solution, correlation function is used. Experimental results have been examined on standard set of satellite images using various numbers of thresholds. The results based on Kapur's entropy reveal that CS, ELR-CS and WDO method can be accurately and efficiently used in multilevel thresholding problem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 41, Issue 7, 1 June 2014, Pages 3538-3560
Journal: Expert Systems with Applications - Volume 41, Issue 7, 1 June 2014, Pages 3538-3560
نویسندگان
Ashish Kumar Bhandari, Vineet Kumar Singh, Anil Kumar, Girish Kumar Singh,