کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10323354 | 660933 | 2005 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The objective of the proposed study is to explore the performance of credit scoring using a two-stage hybrid modeling procedure with artificial neural networks and multivariate adaptive regression splines (MARS). The rationale under the analyses is firstly to use MARS in building the credit scoring model, the obtained significant variables are then served as the input nodes of the neural networks model. To demonstrate the effectiveness and feasibility of the proposed modeling procedure, credit scoring tasks are performed on one bank housing loan dataset using cross-validation approach. As the results reveal, the proposed hybrid approach outperforms the results using discriminant analysis, logistic regression, artificial neural networks and MARS and hence provides an alternative in handling credit scoring tasks.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 28, Issue 4, May 2005, Pages 743-752
Journal: Expert Systems with Applications - Volume 28, Issue 4, May 2005, Pages 743-752
نویسندگان
Tian-Shyug Lee, I-Fei Chen,