کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10323688 | 661307 | 2005 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The design of beta basis function neural network and beta fuzzy systems by a hierarchical genetic algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We propose an evolutionary method for the design of beta basis function neural networks (BBFNN) and of beta fuzzy systems (BFS). Classical training algorithms start with a predetermined network structure for neural networks and with a predetermined number of fuzzy rules for fuzzy systems. Generally speaking both the neural network and the fuzzy systems are either insufficient or overcomplicated. This paper describes a hierarchical genetic learning model of the BBFNN and the BFS. In order to examine the performance of the proposed algorithm, it is used for functional approximation problem for the case of BBFNN and for the identification of an induction machine fuzzy plant model for the case of BFS. The results obtained have been encouraging.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 154, Issue 2, 1 September 2005, Pages 251-274
Journal: Fuzzy Sets and Systems - Volume 154, Issue 2, 1 September 2005, Pages 251-274
نویسندگان
Chaouki Aouiti, Adel M. Alimi, Fakhreddine Karray, Aref Maalej,