کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10327890 | 681441 | 2019 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Latent Gaussian random field mixture models
ترجمه فارسی عنوان
مدل مخلوط تصادفی میدان گاوس غالبا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
For many problems in geostatistics, land cover classification, and brain imaging the classical Gaussian process models are unsuitable due to sudden, discontinuous, changes in the data. To handle data of this type, we introduce a new model class that combines discrete Markov random fields (MRFs) with Gaussian Markov random fields. The model is defined as a mixture of several, possibly multivariate, Gaussian Markov random fields. For each spatial location, the discrete MRF determines which of the Gaussian fields in the mixture that is observed. This allows for the desired discontinuous changes of the latent processes, and also gives a probabilistic representation of where the changes occur spatially. By combining stochastic gradient minimization with sparse matrix techniques we obtain computationally efficient methods for both likelihood-based parameter estimation and spatial interpolation. The model is compared to Gaussian models and standard MRF models using simulated data and in application to upscaling of soil permeability data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 130, February 2019, Pages 80-93
Journal: Computational Statistics & Data Analysis - Volume 130, February 2019, Pages 80-93
نویسندگان
David Bolin, Jonas Wallin, Finn Lindgren,