کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10345051 698146 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pattern formation in the FitzHugh-Nagumo model
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Pattern formation in the FitzHugh-Nagumo model
چکیده انگلیسی
In this paper, we investigate the effect of diffusion on pattern formation in FitzHugh-Nagumo model. Through the linear stability analysis of local equilibrium we obtain the condition how the Turing bifurcation, Hopf bifurcation and the oscillatory instability boundaries arise. By using the method of the weak nonlinear multiple scales analysis and Taylor series expansion, we derive the amplitude equations of the stationary patterns. The analysis of amplitude equations shows the occurrence of different complex phenomena, including Turing instability Eckhaus instability and zigzag instability. In addition, we apply this analysis to FitzHugh-Nagumo model and find that this model has very rich dynamical behaviors, such as spotted, stripe and hexagon patterns. Finally, the numerical simulation shows that the analytical results agree with numerical simulation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 70, Issue 5, September 2015, Pages 1082-1097
نویسندگان
, ,