کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10346007 698667 2014 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic behavior at infinity of the stationary solution to a semilinear heat equation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Asymptotic behavior at infinity of the stationary solution to a semilinear heat equation
چکیده انگلیسی
In this paper we investigate the asymptotic behavior at infinity of the backward self-similar solution of the differential equation ut=Δu+eu, x∈Ω,t>0, where Ω is a ball with the Dirichlet boundary or Rn, 3≤n<∞. We prove that, under some reasonable condition at infinity, every radial symmetric, nontrivial, bounded above solution of the equationωyy+(n−1y−y2)ωy+eω−1=0 tends to minus infinity as y→∞. This equation comes from the scaled ignition model. Furthermore, ω+logy2 converges to a constant for sufficiently large y. This result extends the similar one in Lacey (1993) for an arbitrary solution which is bounded above and for dimension 3≤n<∞ in space.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 67, Issue 6, April 2014, Pages 1289-1292
نویسندگان
, , ,