کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10347279 | 699111 | 2011 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multi-operator based evolutionary algorithms for solving constrained optimization problems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Over the last two decades, many sophisticated evolutionary algorithms have been introduced for solving constrained optimization problems. Due to the variability of characteristics in different COPs, no single algorithm performs consistently over a range of problems. In this paper, for a better coverage of the problem characteristics, we introduce an algorithm framework that uses multiple search operators in each generation. The appropriate mix of the search operators, for any given problem, is determined adaptively. The framework is tested by implementing two different algorithms. The performance of the algorithms is judged by solving 60 test instances taken from two constrained optimization benchmark sets from specialized literature. The first algorithm, which is a multi-operator based genetic algorithm (GA), shows a significant improvement over different versions of GA (each with a single one of these operators). The second algorithm, using differential evolution (DE), also confirms the benefit of the multi-operator algorithm by providing better and consistent solutions. The overall results demonstrated that both GA and DE based algorithms show competitive, if not better, performance as compared to the state of the art algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Operations Research - Volume 38, Issue 12, December 2011, Pages 1877-1896
Journal: Computers & Operations Research - Volume 38, Issue 12, December 2011, Pages 1877-1896
نویسندگان
Saber M. Elsayed, Ruhul A. Sarker, Daryl L. Essam,