کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10366382 | 872451 | 2011 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A systematic literature review of actionable alert identification techniques for automated static code analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
تعامل انسان و کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The selected studies support (with varying strength), the premise that the effective use of ASA is improved by supplementing ASA with an AAIT. Seven of the 21 selected studies reported the precision of the proposed AAITs. The two studies with the highest precision built models using the subject program's history. Precision measures how well a technique identifies true actionable alerts out of all predicted actionable alerts. Precision does not measure the number of actionable alerts missed by an AAIT or how well an AAIT identifies unactionable alerts. Inconsistent use of evaluation metrics, subject programs, and ASAs in the selected studies preclude meta-analysis and prevent the current results from informing evidence-based selection of an AAIT. We propose building on an actionable alert identification benchmark for comparison and evaluation of AAIT from literature on a standard set of subjects and utilizing a common set of evaluation metrics.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information and Software Technology - Volume 53, Issue 4, April 2011, Pages 363-387
Journal: Information and Software Technology - Volume 53, Issue 4, April 2011, Pages 363-387
نویسندگان
Sarah Heckman, Laurie Williams,