کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10397546 | 889617 | 2005 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A batch-to-batch iterative optimal control strategy based on recurrent neural network models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
تکنولوژی و شیمی فرآیندی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A batch-to-batch model-based iterative optimal control strategy for batch processes is proposed. To address the difficulties in developing detailed mechanistic models, recurrent neural networks are used to model batch processes from process operational data. Due to model-plant mismatches and unmeasured disturbances, the calculated optimal control profile may not be optimal when applied to the actual process. To address this issue, model prediction errors from previous batch runs are used to improve neural network model predictions for the current batch. Since the main interest in batch process operation is on the end of batch product quality, a quadratic objective function is introduced to track the desired qualities at the end-point of a batch. Because model errors are gradually reduced from batch-to-batch, the control trajectory gradually approaches the optimal control policy. The proposed scheme is illustrated on a simulated methyl methacrylate polymerisation reactor.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Process Control - Volume 15, Issue 1, February 2005, Pages 11-21
Journal: Journal of Process Control - Volume 15, Issue 1, February 2005, Pages 11-21
نویسندگان
Zhihua Xiong, Jie Zhang,