کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10398833 890348 2011 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A convex optimization approach to robust iterative learning control for linear systems with time-varying parametric uncertainties
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
A convex optimization approach to robust iterative learning control for linear systems with time-varying parametric uncertainties
چکیده انگلیسی
In this paper, we present a new robust iterative learning control (ILC) design for a class of linear systems in the presence of time-varying parametric uncertainties and additive input/output disturbances. The system model is described by the Markov matrix as an affine function of parametric uncertainties. The robust ILC design is formulated as a min-max problem using a quadratic performance criterion subject to constraints of the control input update. Then, we propose a novel methodology to find a suboptimal solution of the min-max optimization problem. First, we derive an upper bound of the worst-case performance. As a result, the min-max problem is relaxed to become a minimization problem in the form of a quadratic program. Next, the robust ILC design is cast into a convex optimization over linear matrix inequalities (LMIs) which can be easily solved using off-the-shelf optimization solvers. The convergences of the control input and the error are proved. Finally, the robust ILC algorithm is applied to a physical model of a flexible link. The simulation results reveal the effectiveness of the proposed algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 47, Issue 9, September 2011, Pages 2039-2043
نویسندگان
, ,