کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10398839 | 890348 | 2011 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Convexity and convex approximations of discrete-time stochastic control problems with constraints
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We investigate constrained optimal control problems for linear stochastic dynamical systems evolving in discrete time. We consider minimization of an expected value cost subject to probabilistic constraints. We study the convexity of a finite-horizon optimization problem in the case where the control policies are affine functions of the disturbance input. We propose an expectation-based method for the convex approximation of probabilistic constraints with polytopic constraint function, and a Linear Matrix Inequality (LMI) method for the convex approximation of probabilistic constraints with ellipsoidal constraint function. Finally, we introduce a class of convex expectation-type constraints that provide tractable approximations of the so-called integrated chance constraints. Performance of these methods and of existing convex approximation methods for probabilistic constraints is compared on a numerical example.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 47, Issue 9, September 2011, Pages 2082-2087
Journal: Automatica - Volume 47, Issue 9, September 2011, Pages 2082-2087
نویسندگان
Eugenio Cinquemani, Mayank Agarwal, Debasish Chatterjee, John Lygeros,