کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10415148 | 897227 | 2005 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A gray-encoded, hybrid-accelerated, genetic algorithm for global optimizations in dynamical systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A gray-encoded hybrid accelerating genetic algorithm (GHAGA) with Nelder-Mead simplex searching operator and simplex algorithm is developed for the global optimization of dynamical systems. The corresponding convergence theorem is developed to guarantee the new algorithm to be convergent. The efficiency of the new algorithm is verified by application of several well-investigated nonlinear functions. This algorithm overcomes any Hamming-cliff phenomena in existing genetic methods, and it is very efficient for optimizing nonlinear models compared to existing genetic algorithms and other traditional optimization methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 10, Issue 4, June 2005, Pages 355-363
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 10, Issue 4, June 2005, Pages 355-363
نویسندگان
Xiaohua Yang, Zhifeng Yang, Gui-hua Lu, Jianqiang Li,