کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10525929 | 958387 | 2005 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Random walks whose concave majorants often have few faces
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We construct a continuous distribution G such that the number of faces in the smallest concave majorant of the random walk with G-distributed summands will take on each natural number infinitely often with probability one. This investigation is motivated by the fact that the number of faces Fn of the concave majorant of the random walk at time n has the same distribution as the number of records Rn in the sequence of summands up to time n. Since Rn is almost surely asymptotic to logn, the construction shows that despite the equality of all of the one-dimensional marginals, the almost sure behaviors of the sequences {Rn} and {Fn} may be radically different.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistics & Probability Letters - Volume 75, Issue 2, 15 November 2005, Pages 97-102
Journal: Statistics & Probability Letters - Volume 75, Issue 2, 15 November 2005, Pages 97-102
نویسندگان
Zhihua Qiao, J. Michael Steele,