کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10527245 | 958744 | 2014 | 44 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A mixed-step algorithm for the approximation of the stationary regime of a diffusion
ترجمه فارسی عنوان
یک الگوریتم ترکیبی برای تقریب رژیم ثابت پخش
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
چکیده انگلیسی
In some recent papers, some procedures based on some weighted empirical measures related to decreasing-step Euler schemes have been investigated to approximate the stationary regime of a diffusion (possibly with jumps) for a class of functionals of the process. This method is efficient but needs the computation of the function at each step. To reduce the complexity of the procedure (especially for functionals), we propose in this paper to study a new scheme, called the mixed-step scheme, where we only keep some regularly time-spaced values of the Euler scheme. Our main result is that, when the coefficients of the diffusion are smooth enough, this alternative does not change the order of the rate of convergence of the procedure. We also investigate a Richardson-Romberg method to speed up the convergence and show that the variance of the original algorithm can be preserved under a uniqueness assumption for the invariant distribution of the “duplicated” diffusion, condition which is extensively discussed in the paper. Finally, we conclude by giving sufficient “asymptotic confluence” conditions for the existence of a smooth solution to a discrete version of the associated Poisson equation, condition which is required to ensure the rate of convergence results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Stochastic Processes and their Applications - Volume 124, Issue 1, January 2014, Pages 522-565
Journal: Stochastic Processes and their Applications - Volume 124, Issue 1, January 2014, Pages 522-565
نویسندگان
Gilles Pagès, Fabien Panloup,