کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10624830 989612 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering
چکیده انگلیسی
The need for reconstructing complex bone defects in the maxillofacial region as a result of trauma, tumor surgery or congenital malformation has become a hot topic in the field of tissue engineering. Tools such as 3D computer aided design (CAD) systems and rapid prototyping (RP) machines can be exploited to fabricate custom made bone scaffolds. RP techniques allow the construction of complex physical models based on 3D clinical images elaborated by suitable software and CAD systems. Hydroxyapatite (HA) is one of the most commonly used materials for bone reconstruction because of its close similarity in composition to human bone and teeth. Thus, producing a custom-made scaffold from a ceramic material directly by RP represents an exciting challenge. The aim of this paper is the development of a suspension of HA powder dispersed in an UV curable epoxy based resin, suitable for stereolithography (SLA). The influence of different HA concentrations within the ceramic suspension on the kinetics of the photochemical reaction was firstly investigated. The rheological behavior of the same ceramic suspensions was also analyzed by verifying the effect of HA on the viscosity and the stability of the suspensions as a function of the shear rate and the time from preparation. After the selection of a suitable suspension, simple green ceramic bars built by stereolithography and sintered with an appropriate thermal cycle, were built and characterized, showing good mechanical properties. A complex prototype, starting from a CAD model, was finally built by a SLA apparatus.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ceramics International - Volume 40, Issue 10, Part A, December 2014, Pages 15455-15462
نویسندگان
, , , , ,