کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10729708 | 1042075 | 2005 | 4 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Prediction of peak-to-background ratio in gamma-ray spectrometry using simplex optimized artificial neural network
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
تشعشع
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An artificial neural network (ANN) model was used for the prediction of peak-to-background ratio (PBR) as a function of measurement time in gamma-ray spectrometry. In order to make the ANN model with good predictive power, the ANN parameters were optimized simultaneously employing a variable-size simplex method. Most of the predicted and the experimental PBR values for eight radionuclides (226Ra, 238U, 235U, 40K, 232Th, 134Cs, 137Cs, and 7Be) commonly detected in soil samples agreed to within ±19.4% of the expanded uncertainty and 2.61% of average bias.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Radiation and Isotopes - Volume 63, Issue 3, September 2005, Pages 363-366
Journal: Applied Radiation and Isotopes - Volume 63, Issue 3, September 2005, Pages 363-366
نویسندگان
SnezËana DragoviÄ, Antonije Onjia,