کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10914649 | 1088804 | 2015 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Robust BRCA1-like classification of copy number profiles of samples repeated across different datasets and platforms
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
hg19aCGHMIPdsDNANGSSNRdouble-stranded DNA - DNA رشته ایDNA - DNA یا اسید دزوکسی ریبونوکلئیکBAC - LACFFPE - MEPArray comparative genomic hybridization - اریبر هیبریداسیون ژنومی مقایسه ایdeoxyribonucleic acid - اسید deoxyribonucleicBreast cancer - سرطان پستانCopy number - شماره کپی کنیدClassification - طبقه بندیformalin fixed paraffin embedded - فرمالین ثابت پارافین تعبیه شده استsignal to noise ratio - نسبت سیگنال به نویزMolecular inversion probe - پروب معکوس مولکولیBRCA1 - ژن BRCA1bacterial artificial chromosome - کروموزوم مصنوعی باکتریایی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
تحقیقات سرطان
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We investigated samples from 230 breast cancer patients for which a CN profile had been generated on two to five platforms, comprising low coverage CN sequencing, CN extraction from targeted sequencing panels (CopywriteR), Affymetrix SNP6.0, 135K/720K oligonucleotide aCGH, Affymetrix Oncoscan FFPE (MIP) technology, 3K BAC and 32K BAC aCGH. Pairwise comparison of genomic position-mapped profiles from the original aCGH platform and other platforms revealed concordance. For most cases, biological differences between samples exceeded the differences between platforms within one sample. We observed the same classification across different platforms in over 80% of the patients and kappa values of at least 0.36. Differential classification could be attributed to CN profiles that were not strongly associated to one class. In conclusion, we have shown that the genomic regions that define our BRCA1-like classifier are robustly measured by different CN profiling technologies, providing the possibility to retro- and prospectively investigate BRCA1-like classification across a wide range of CN platforms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Molecular Oncology - Volume 9, Issue 7, August 2015, Pages 1274-1286
Journal: Molecular Oncology - Volume 9, Issue 7, August 2015, Pages 1274-1286
نویسندگان
Philip C. Schouten, Anita Grigoriadis, Thomas Kuilman, Hasan Mirza, Johnathan A. Watkins, Saskia A. Cooke, Ewald van Dyk, Tesa M. Severson, Oscar M. Rueda, Marlous Hoogstraat, Caroline V.M. Verhagen, Rachael Natrajan, Suet-Feung Chin, Esther H. Lips,