کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10926485 | 1091856 | 2008 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Mapping the ruthenium red-binding site of the voltage-dependent anion channel-1
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
بیولوژی سلول
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We have previously shown that ruthenium red (RuR) binds to the voltage-dependent anion channel (VDAC) in the outer mitochondrial membrane, decreasing channel conductance and protecting against apoptotic cell death. In this report, we define the murine and yeast VDAC1 amino acid residues involved in the interaction with RuR. Binding of RuR to bilayer-reconstituted mVDAC1 and the resulting channel closure was inhibited upon mutation of specific VDAC1 residues. RuR protection against cell death, as induced by overexpression of native or mutated mVDAC1, was also diminished upon mutation of these amino acids. Moreover, RuR-mediated inhibition of cytochrome c release normally induced by staurosporine was not observed in cells expressing mutants VDAC1. We found that four glutamate residues, two each located in the first and third mVDAC1 cytosolic loops, are required for the interaction of VDAC1 with RuR and subsequent protection against cell death. Similar results were obtained with Q72E-yeast VDAC1, except that only three glutamate residues, located in two cytosolic loops were required. As a hexavalent reagent, RuR is expected to bind to more than one negatively charged group. Our results thus clearly indicate that RuR protects against cell death via a direct interaction with VDAC1 to inhibit cytochrome c release and subsequent cell death.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Cell Calcium - Volume 43, Issue 2, February 2008, Pages 196-204
Journal: Cell Calcium - Volume 43, Issue 2, February 2008, Pages 196-204
نویسندگان
Adrian Israelson, Hilal Zaid, Salah Abu-Hamad, Edna Nahon, Varda Shoshan-Barmatz,