کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10932010 1093682 2013 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیولوژی سلول
پیش نمایش صفحه اول مقاله
MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development
چکیده انگلیسی
Skeletal myogenesis in the embryo is regulated by the coordinated expression of the MyoD family of muscle regulatory factors (MRFs). MyoD and Myf-5, which are the primary muscle lineage-determining factors, function in a partially redundant manner to establish muscle progenitor cell identity. Previous diphtheria toxin (DTA)-mediated ablation studies showed that MyoD+ progenitors rescue myogenesis in embryos in which Myf-5-expressing cells were targeted for ablation, raising the possibility that the regulative behavior of distinct, MRF-expressing populations explains the functional compensatory activities of these MRFs. Using MyoDiCre mice, we show that DTA-mediated ablation of MyoD-expressing cells results in the cessation of myogenesis by embryonic day 12.5 (E12.5), as assayed by myosin heavy chain (MyHC) and Myogenin staining. Importantly, MyoDiCre/+;R26DTA/+ embryos exhibited a concomitant loss of Myf-5+ progenitors, indicating that the vast majority of Myf-5+ progenitors express MyoD, a conclusion consistent with immunofluorescence analysis of Myf-5 protein expression in MyoDiCre lineage-labeled embryos. Surprisingly, staining for the paired box transcription factor, Pax7, which functions genetically upstream of MyoD in the trunk and is a marker for fetal myoblasts and satellite cell progenitors, was also lost by E12.5. Specific ablation of differentiating skeletal muscle in ACTA1Cre;R26DTA/+ embryos resulted in comparatively minor effects on MyoD+, Myf-5+ and Pax7+ progenitors, indicating that cell non-autonomous effects are unlikely to explain the rapid loss of myogenic progenitors in MyoDiCre/+;R26DTA/+ embryos. We conclude that the vast majority of myogenic cells transit through a MyoD+ state, and that MyoD+ progenitors are essential for myogenesis and stem cell development.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Developmental Biology - Volume 384, Issue 1, 1 December 2013, Pages 114-127
نویسندگان
, , , ,