کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10971998 | 1106760 | 2014 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Development of a serology-based assay for efficacy evaluation of a lactococcicosis vaccine in Seriola fish
ترجمه فارسی عنوان
توسعه یک آزمایش مبتنی بر سرولوژیک برای ارزیابی اثربخشی واکسن لاکتوکوکسیوز در ماهی سرئولا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم آبزیان
چکیده انگلیسی
Lactococcicosis is an infection caused by the bacterium Lactococcus garvieae and creates serious economic damage to cultured marine and fresh water fish industries. The use of the assay currently applied to evaluate the potency of the lactococcicosis vaccine is contingent upon meeting specific parameters after statistical analysis of the percent survival of the vaccinated yellowtail or greater amberjack fish after challenge with a virulent strain of L. garvieae. We found that measuring the serological response with a quantitative agglutinating antibody against the L. garvieae antigen (phenotype KG+) was an effective method of monitoring the potency of lactococcicosis vaccines. Vaccinated fish had significantly higher antibody titers than control fish when the L. garvieae Lg2-S strain was used as an antigen. Furthermore, the titer of the KG + agglutinating antibody was correlated with vaccine potency, and the cut-off titer was determined by comparing the data with those from the challenge test. An advantage of the proposed serology-based potency assay is that it will contribute to reduced numbers of animal deaths during vaccine potency evaluations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fish & Shellfish Immunology - Volume 38, Issue 1, May 2014, Pages 135-139
Journal: Fish & Shellfish Immunology - Volume 38, Issue 1, May 2014, Pages 135-139
نویسندگان
Nao Nakajima, Michiko Kawanishi, Saiki Imamura, Fumiya Hirano, Mariko Uchiyama, Kinya Yamamoto, Hidetaka Nagai, Kunihiko Futami, Takayuki Katagiri, Masashi Maita, Mayumi Kijima,