کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11012893 | 1797859 | 2019 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A lower bound for the two-variable Artin conjecture and prime divisors of recurrence sequences
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In 1927, Artin conjectured that any integer other than â1 or a perfect square generates the multiplicative group (Z/pZ)Ã for infinitely many p. In 2000, Moree and Stevenhagen considered a two-variable version of this problem, and proved a positive density result conditionally to the generalized Riemann Hypothesis by adapting a proof by Hooley for the original conjecture. In this article, we prove an unconditional lower bound for this two-variable problem. In particular, we prove an estimate for the number of distinct primes which divide one of the first N terms of a non-degenerate binary recurrence sequence. We also prove a weaker version of the same theorem, and give three proofs that we consider to be of independent interest. The first proof uses a transcendence result of Stewart, the second uses a theorem of Bombieri and Schmidt on Thue equations and the third uses Mumford's gap principle for counting points on curves by their height. We finally prove a disjunction theorem, where we consider the set of primes satisfying either our two-variable condition or the original condition of Artin's conjecture. We give an unconditional lower bound for the number of such primes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 194, January 2019, Pages 8-29
Journal: Journal of Number Theory - Volume 194, January 2019, Pages 8-29
نویسندگان
M. Ram Murty, François Séguin, Cameron L. Stewart,