کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
11021735 1703049 2019 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An asymptotic expansion for the expected number of real zeros of real random polynomials spanned by OPUC
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
An asymptotic expansion for the expected number of real zeros of real random polynomials spanned by OPUC
چکیده انگلیسی
Let {φi}i=0∞ be a sequence of orthonormal polynomials on the unit circle with respect to a positive Borel measure μ that is symmetric with respect to conjugation. We study asymptotic behavior of the expected number of real zeros, say En(μ), of random polynomialsPn(z):=∑i=0nηiφi(z), where η0,…,ηn are i.i.d. standard Gaussian random variables. When μ is the acrlength measure such polynomials are called Kac polynomials and it was shown by Wilkins that En(|dξ|) admits an asymptotic expansion of the formEn(|dξ|)∼2πlog⁡(n+1)+∑p=0∞Ap(n+1)−p (Kac himself obtained the leading term of this expansion). In this work we generalize the result of Wilkins to the case where μ is absolutely continuous with respect to arclength measure and its Radon-Nikodym derivative extends to a holomorphic non-vanishing function in some neighborhood of the unit circle. In this case En(μ) admits an analogous expansion with the coefficients Ap depending on the measure μ for p≥1 (the leading order term and A0 remain the same).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 469, Issue 1, 1 January 2019, Pages 428-446
نویسندگان
, ,