کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
11025033 1701037 2018 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات کامپیوتر در علوم زمین
پیش نمایش صفحه اول مقاله
Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging
چکیده انگلیسی
Soil Organic Carbon (SOC) is a useful representative of soil fertility and an essential parameter in controlling the dynamics of various agrochemicals in soil. Soil texture is also used to calculate soil's ability to retain water for plant growth. SOC and soil texture are thus important parameters of agricultural soils and need to be regularly monitored. Optical satellite remote sensing offers the potential for frequent surveys over large areas. In addition, the recently-operated Sentinel-2 missions provide free imagery. This study compared the capabilities of Sentinel-2 for monitoring and mapping of SOC and soil texture (clay, silt and sand content) with those obtained from airborne hyperspectral (CASI/SASI sensors) and lab ASD FieldSpec spectroradiometer measurements at four agricultural sites in the Czech Republic. Combination of 10 extracted bands of the Sentinel-2 and 18 spectral indices, as independent variables, were used to train prediction models and then produce spatial distribution maps of the selected attributes. Results showed that the prediction accuracy based on lab spectroscopy, airborne and Sentinel-2 in the majority of the sites was adequate for SOC and fair for clay; however, Sentinel-2 imagery could not be used to detect and map variations in silt and sand. The SOC and clay maps derived from the airborne and spaceborne datasets showed similar trend, with both performing better where SOC levels were relatively high, though at the highest levels Sentinel-2 was able to create the SOC map more precisely than the airborne sensors. Taken across all SOC levels measured in the reference data, Sentinel-2 results were marginally lower than lab spectroscopy and airborne imagery, but this reduction in precision may be offset by the extensive geographical coverage and more frequent revisit characteristic of satellite observation. The increased temporal revisit and area are expected to be positive enhancements to the acquisition of high-quality information on variations in SOC and clay content of bare soils.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 218, 1 December 2018, Pages 89-103
نویسندگان
, , , ,