کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11026477 | 1666379 | 2018 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Development of a warning model for coastal freak wave occurrences using an artificial neural network
ترجمه فارسی عنوان
توسعه یک مدل هشدار برای وقایع موج فجیع ساحلی با استفاده از یک شبکه عصبی مصنوعی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موج دمدمی مزاجی ساحلی، شبکه های عصبی مصنوعی، مدل هشدار، بوی داده،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی دریا (اقیانوس)
چکیده انگلیسی
The potential for coastal freak waves (CFWs) represents a threat to people living in coastal areas. CFWs are generated via the evolution of a wave and its interactions with coastal structures or rocks; however, the exact mechanism of their formation is not clear. Here, a data-driven warning model based on an artificial neural network (ANN) is proposed to predict the possibility of CFW occurrence. Seven parameters (significant wave height, peak period, wind speed, wave groupiness factor, Benjamin Feir Index (BFI), kurtosis, and wind-wave direction misalignment) collected prior to the occurrence of the CFW are used to develop the model. The buoy data associated with 40 known CFW events are used for model training, and the data associated with 23 such events are used for validation. The use of data obtained during the 6-h period prior to CFW occurrence combined with the same amount of non-CFW data is shown to produce the best model. Two validations using media-published and camera-recorded CFW events show that the accuracy rate (ACR) exceeds 90% and the recall rate (RCR) exceeds 87%, demonstrating the accuracy of the proposed model. This warning model has been implemented in operational runs since 2016.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ocean Engineering - Volume 169, 1 December 2018, Pages 270-280
Journal: Ocean Engineering - Volume 169, 1 December 2018, Pages 270-280
نویسندگان
Dong-Jiing Doong, Jen-Ping Peng, Ying-Chih Chen,