کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11031468 | 1645986 | 2018 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hierarchical framework for optimal operation of multiple microgrids considering demand response programs
ترجمه فارسی عنوان
چارچوب سلسله مراتبی برای اجرای مطلوب چندین میکروگرید با توجه به برنامه های واکنش تقاضا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
مهندسی انرژی و فناوری های برق
چکیده انگلیسی
This paper proposes a framework for the optimal operation of multi Micro Grids (multiMGs) based on Hybrid Stochastic/Robust optimization. MultiMGs with various characteristics are considered in this study. They are connected to different buses of their Up-Stream-Network (USN). Day-Ahead (DA) and Real-Time (RT) markets are contemplated. The proposed optimization structure in this paper is a bi-level one since both MGs operators' and USN operator's decisions are considered in the proposed model. The advantages of using time-of-use demand response programs on the optimal operation of USN in the presence of multiMGs are investigated. The uncertainty of different components, including wind units, photovoltaic units, plug-in electric vehicles, and DA market price is captured by using stochastic programming. In addition, robust programming is utilized for contemplating the uncertainty of the RT market price. Furthermore, the grid-connected and island modes of MGs' operation are investigated in this paper, discussing also the virtues of utilizing multiMGs over single MG. Finally, IEEE 18-bus and 30-bus test systems are considered for MGs and USN networks respectively to scrutinize the simulation results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electric Power Systems Research - Volume 165, December 2018, Pages 199-213
Journal: Electric Power Systems Research - Volume 165, December 2018, Pages 199-213
نویسندگان
Mohammad Saeed Misaghian, Mohammadali Saffari, Mohsen Kia, Mehrdad Setayesh Nazar, Alireza Heidari, Miadreza Shafie-khah, João P.S. Catalão,