کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1136516 | 1489158 | 2011 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The spectral collocation method with three different bases for solving a nonlinear partial differential equation arising in modeling of nonlinear waves
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Ostrovsky equation (modified Korteweg–de Vries equation) is used for modeling of a weakly nonlinear surface and internal waves in a rotating ocean. The Ostrovsky equation is a nonlinear partial differential equation and also is complicated due to a nonlinear integral operator as well as spatial and temporal derivatives. In this paper we propose a numerical scheme for solving this equation. Our numerical method is based on a collocation method with three different bases such as BB-spline, Fourier and Chebyshev. A numerical comparison of these schemes is also provided by three examples.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical and Computer Modelling - Volume 53, Issues 9–10, May 2011, Pages 1865–1877
Journal: Mathematical and Computer Modelling - Volume 53, Issues 9–10, May 2011, Pages 1865–1877
نویسندگان
Mehdi Dehghan, Farhad Fakhar-Izadi,