کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1136516 1489158 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The spectral collocation method with three different bases for solving a nonlinear partial differential equation arising in modeling of nonlinear waves
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
The spectral collocation method with three different bases for solving a nonlinear partial differential equation arising in modeling of nonlinear waves
چکیده انگلیسی

Ostrovsky equation (modified Korteweg–de Vries equation) is used for modeling of a weakly nonlinear surface and internal waves in a rotating ocean. The Ostrovsky equation is a nonlinear partial differential equation and also is complicated due to a nonlinear integral operator as well as spatial and temporal derivatives. In this paper we propose a numerical scheme for solving this equation. Our numerical method is based on a collocation method with three different bases such as BB-spline, Fourier and Chebyshev. A numerical comparison of these schemes is also provided by three examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical and Computer Modelling - Volume 53, Issues 9–10, May 2011, Pages 1865–1877
نویسندگان
, ,