کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
11419 739 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Biodegradation of unsaturated poly(ester-amide)s and their hydrogels
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Biodegradation of unsaturated poly(ester-amide)s and their hydrogels
چکیده انگلیسی

The biodegradability of both unsaturated (UPEA) and saturated (SPEA) poly(ester-amide)s and a series of hydrogels (UPEA-G) fabricated from UPEA and poly(ethylene glycol) diacrylate (PEG-DA) was examined as a function of PEA chemical structures in both phosphate buffered saline (PBS) and α-chymotrypsin solutions. Based on the weight loss data, α-chymotrypsin had a much more profound effect on the hydrolyses of UPEA, SPEA polymers (up to 32% weight loss on day 1 for FPBe) and UPEA-G hydrogels (up to 32% weight loss on day 31 for FPBe-G28) than a PBS buffer (less than 10% for polymers and 16% for hydrogels). The changes in elastic moduli and the interior morphology of the hydrogels in both PBS buffer and α-chymotrypsin solutions were also monitored for 2 months, and the hydrogels’ crosslinking density (ne) and molecular weight between crosslinks (Mc) before and after biodegradation were then examined as a function of biodegradation time, enzyme concentration, and different chemical structure of precursors. The differences in biodegradation rates among PEA polymer and UPEA-G hydrogels are ascribed to differences in hydrophilicity and saturated or unsaturated structure of the polymers and hydrogel precursors. Our results showed that, by changing the concentration of α-chymotrypsin, the type of UPEA precursors and their feed ratio, the UPEA-G hydrogels could have controllable biodegradability, which is quite desirable for a wide range of biomedical and pharmaceutical applications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 28, Issue 22, August 2007, Pages 3284–3294
نویسندگان
, ,