کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1145223 1489654 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Direct shrinkage estimation of large dimensional precision matrix
ترجمه فارسی عنوان
تخمین مستقیم انقباض ماتریس دقت اندازه بزرگ
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
چکیده انگلیسی

In this work we construct an optimal shrinkage estimator for the precision matrix in high dimensions. We consider the general asymptotics when the number of variables p→∞p→∞ and the sample size n→∞n→∞ so that p/n→c∈(0,+∞)p/n→c∈(0,+∞). The precision matrix is estimated directly, without inverting the corresponding estimator for the covariance matrix. The recent results from random matrix theory allow us to find the asymptotic deterministic equivalents of the optimal shrinkage intensities and estimate them consistently. The resulting distribution-free estimator has almost surely the minimum Frobenius loss. Additionally, we prove that the Frobenius norms of the inverse and of the pseudo-inverse sample covariance matrices tend almost surely to deterministic quantities and estimate them consistently. Using this result, we construct a bona fide optimal linear shrinkage estimator for the precision matrix in case c<1c<1. At the end, a simulation is provided where the suggested estimator is compared with the estimators proposed in the literature. The optimal shrinkage estimator shows significant improvement even for non-normally distributed data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 146, April 2016, Pages 223–236
نویسندگان
, , ,