کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1145265 1489651 2016 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Confidence intervals for high-dimensional partially linear single-index models
ترجمه فارسی عنوان
محدوده اطمینان برای مدلهای یکپارچه خطی با ابعاد بزرگ
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
چکیده انگلیسی

We study partially linear single-index models where both model parts may contain high-dimensional variables. While the single-index part is of fixed dimension, the dimension of the linear part is allowed to grow with the sample size. Due to the addition of penalty terms to the loss function in order to provide sparse estimators, such as obtained by lasso or smoothly clipped absolute deviation, the construction of confidence intervals for the model parameters is not as straightforward as in the classical low-dimensional data framework. By adding a correction term to the penalized estimator a desparsified estimator is obtained for which asymptotic normality is proven. We study the construction of confidence intervals and hypothesis tests for such models. The simulation results show that the method performs well for high-dimensional single-index models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 149, July 2016, Pages 13–29
نویسندگان
, ,